Visualizing Arcs of Implicit Algebraic Curves, Exactly and Fast

نویسندگان

  • Pavel Emeliyanenko
  • Eric Berberich
  • Michael Sagraloff
چکیده

Given a Cylindrical Algebraic Decomposition of an implicit algebraic curve, visualizing distinct curve arcs is not as easy as it stands because, despite the absence of singularities in the interior, the arcs can pass arbitrary close to each other. We present an algorithm to visualize distinct connected arcs of an algebraic curve efficiently and precise (at a given resolution), irrespective of how close to each other they actually pass. Our hybrid method inherits the ideas of subdivision and curve-tracking methods. With an adaptive mixed-precision model we can render the majority of algebraic curves using floating-point arithmetic without sacrificing the exactness of the final result. The correctness and applicability of our algorithm is borne out by the success of our webdemo presented in [10].

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Approximating Algebraic Space Curves by Circular Arcs

We introduce a new method to approximate algebraic space curves. The algorithm combines a subdivision technique with local approximation of piecewise regular algebraic curve segments. The local technique computes pairs of polynomials with modified Taylor expansions and generates approximating circular arcs. We analyze the connection between the generated approximating arcs and the osculating ci...

متن کامل

Sweeping Arrangements of Cubic Segments Exactly and Efficiently

A method is presented to compute the planar arrangement induced by segments of algebraic curves of degree three (or less), using an improved Bentley-Ottmann sweep-line algorithm. Our method is exact (it provides the mathematically correct result), complete (it handles all possible geometric degeneracies), and efficient (the implementation can handle hundreds of segments). The range of possible ...

متن کامل

A descent method for explicit computations on curves

‎It is shown that the knowledge of a surjective morphism $Xto Y$ of complex‎ ‎curves can be effectively used‎ ‎to make explicit calculations‎. ‎The method is demonstrated‎ ‎by the calculation of $j(ntau)$ (for some small $n$) in terms of $j(tau)$ for the elliptic curve ‎with period lattice $(1,tau)$‎, ‎the period matrix for the Jacobian of a family of genus-$2$ curves‎ ‎complementing the classi...

متن کامل

Algebraic curves and maximal arcs

A lower bound on the minimum degree of the plane algebraic curves containing every point in a large point-set K of the Desarguesian plane PG(2, q) is obtained. The case where K is a maximal (k, n)-arc is considered in greater depth.

متن کامل

On Projections in Geometric Design

We discuss using projected manifolds in geometric design and processing. Curves and surfaces are defined in n-space as algebraic sets of the appropriate dimensionality, and their projection into a three-dimensional subspace is considered. In this approach, the additional variables serve to express simply geometric constraints, and so complex surfaces such as offsets, equi-distance surfaces, rou...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2009